
Palomar	
 Transient	
 Factory	

Archive	
 Scripted	
 Access	

Basic	
 Use	

In	
 addi:on	
 to	
 an	
 easy-­‐to-­‐use	
 GUI	
 interface,	
 PTF	
 also	
 provides	
 an	
 interface	
 to	
 the	
 archive	
 which	

can	
 be	
 scripted,	
 called	
 “IBE”.	
 This	
 makes	
 it	
 easy	
 to	
 embed	
 access	
 to	
 the	
 archive	
 directly	
 in	

soGware.	
 Two	
 of	
 the	
 most	
 common	
 uses	
 for	
 this	
 are	
 to	
 embed	
 access	
 to	
 thumbnailed	
 images	

from	
 PTF	
 into	
 a	
 science	
 tool,	
 for	
 example,	
 a	
 visualiza:on	
 tool	
 for	
 SNe.	
 Another	
 use	
 is	
 to	
 quickly	

enable	
 bulk	
 nightly	
 downloads	
 of	
 data,	
 without	
 requiring	
 manual	
 human	
 interven:on	
 in	
 order	

to	
 use	
 the	
 GUI.	
 This	
 scripted	
 interface’s	
 capabili:es	
 are	
 actually	
 very	
 similar	
 to	
 that	
 of	
 the	
 GUI,	

primarily	
 because	
 both	
 are	
 applica:on	
 layers	
 on	
 top	
 of	
 a	
 shared	
 soGware	
 framework.	

	

Detailed	
 documenta:on	
 for	
 PTF	
 is	
 found	
 at:	

	

hPp://irsa.ipac.caltech.edu/ibe/docs/pR/images/level1/	

	

Generalized	
 documenta:on	
 on	
 IBE	
 capabili:es,	
 and	
 in	
 par:cular	
 op:onal	

parameters,	
 can	
 be	
 found	
 at	

	

hPp://irsa.ipac.caltech.edu/ibe/index.html	

	

You	
 use	
 the	
 IBE	
 by	
 assembling	
 strings	
 which	
 are	
 sent	
 to	
 the	
 archive	
 via	
 “hPp”,	
 for	

example,	
 using	
 the	
 unix	
 command	
 “wget”.	

	

This	
 is	
 generally	
 a	
 two	
 step	
 process.	
 The	
 reason	
 for	
 this	
 is	
 that	
 the	
 majority	
 of	
 typical	

data	
 searches	
 in	
 PTF	
 resolve	
 to	
 many	
 different	
 data	
 products.	
 This	
 results	
 from	
 PTF	

being	
 a	
 synop:c	
 survey	
 –	
 any	
 given	
 object	
 has	
 been	
 observed	
 many,	
 many	
 :mes.	

	

The	
 first	
 step	
 is	
 essen:ally	
 a	
 database	
 query.	
 It	
 will	
 return	
 a	
 table	
 of	
 products	
 and	

metadata	
 matching	
 your	
 query.	
 You	
 then	
 use	
 your	
 own	
 soGware	
 to	
 parse	
 this	
 table	

and	
 select	
 products	
 for	
 download.	

	

The	
 second	
 step	
 is	
 to	
 send	
 a	
 string	
 which	
 returns	
 the	
 selected	
 data	
 (e.g.	
 FITS	
 files).	

Typically	
 you	
 iterate	
 this	
 step,	
 since	
 one	
 command	
 is	
 needed	
 per	
 file.	

	

On	
 the	
 following	
 pages	
 we	
 will	
 work	
 some	
 simple	
 examples	
 using	
 data	
 from	
 the	
 PTF	

first	
 data	
 release.	
 The	
 text	
 you	
 type	
 is	
 in	
 yellow.	

Simple	
 Posi:onal	
 Search	

humu%	
 wget	
 "hPp://irsa.ipac.caltech.edu/ibe/search/pR/images/level1?
POS=148.969687,69.679383"	
 -­‐O	
 out.txt	

-­‐-­‐2014-­‐05-­‐01	
 16:43:09-­‐-­‐	
 	
 hPp://irsa.ipac.caltech.edu/ibe/search/pR/images/level1?
POS=148.969687,69.679383	

Resolving	
 irsa.ipac.caltech.edu...	
 134.4.54.110	

Connec:ng	
 to	
 irsa.ipac.caltech.edu|134.4.54.110|:80...	
 connected.	

HTTP	
 request	
 sent,	
 awai:ng	
 response...	
 200	
 OK	

Length:	
 unspecified	
 [text/plain]	

Saving	
 to:	
 `out.txt'	

	

	
 	
 	
 	
 [
 	
 	
 	
 	
 	
 	
 	
 	
 	
 <=>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
]	
 2,333,672	
 	
 	
 	
 283K/s	
 	
 	
 in	
 8.0s	
 	
 	
 	
 	

	

2014-­‐05-­‐01	
 16:43:22	
 (283	
 KB/s)	
 -­‐	
 `out.txt'	
 saved	
 [2333672]	

	

humu%	
 	

	

Here	
 is	
 a	
 simple	
 posi:onal	
 search.	
 The	
 posi:on	
 is	
 given	
 in	
 decimal	
 degrees	
 J2000	
 (and	

happens	
 to	
 be	
 the	
 starburst	
 galaxy	
 M82).	
 I	
 have	
 redirected	
 the	
 output	
 via	
 the	
 wget	

command	
 to	
 a	
 file	
 called	
 “out.txt”.	
 Note	
 that	
 public	
 users	
 only	
 have	
 access	
 to	
 the	
 level	
 1	

data	
 at	
 this	
 :me,	
 and	
 that	
 is	
 all	
 we	
 will	
 cover	
 here.	

Let’s	
 open	
 the	
 file	
 and	
 see	
 what	
 we	
 got.	
 It	
 is	
 an	
 ascii	
 IPAC	
 table	
 file.	
 There	
 are	

op:onal	
 parameters	
 that	
 will	
 return	
 different	
 formats.	
 Here	
 we	
 use	
 the	
 classic	

unix	
 “nedit”	
 editor,	
 which	
 easily	
 handles	
 files	
 of	
 arbitrary	
 width.	

Note	
 that	
 occasionally	
 you’ll	
 see	
 some	
 strange	
 metadata	
 –	
 this	
 is	
 usually	
 from	
 the	
 first	

year	
 of	
 opera:ons	
 and	
 the	
 camera	
 soGware	
 was	
 not	
 yet	
 finalized.	

Parsing	
 that	
 file	
 is	
 an	
 exercise	
 leG	
 to	
 the	
 reader.	
 You	
 can	
 read	
 it	
 with	
 shell	
 tools	
 (e.g.	

sed,	
 awk),	
 with	
 IDL	
 using	
 “readcol”,	
 or	
 whatever	
 tools	
 you	
 are	
 used	
 to.	
 Let’s	
 assume	
 at	

the	
 moment	
 you	
 used	
 your	
 eyes	
 and	
 brain,	
 and	
 decided	
 you	
 wanted	
 the	
 data	
 from	
 the	

first	
 entry.	
 Scrolling	
 way	
 over	
 to	
 the	
 right,	
 you’ll	
 find	
 the	
 following	
 columns:	

	

•  pfilename	
 –	
 this	
 is	
 the	
 product	
 name	
 for	
 the	
 intensity	
 or	
 flux	
 image.	
 The	
 “p”	
 stands	

for	
 “primary”.	

•  afilename1	
 –	
 this	
 is	
 the	
 mask	
 file	
 associated	
 with	
 the	
 primary	
 filename.	
 That	
 “a”	

stands	
 for	
 “ancillary”.	

•  afilename3	
 –	
 this	
 is	
 the	
 sextractor	
 aperture	
 photometry	
 catalog,	
 in	
 FITS	
 binary	

format.	

	

For	
 the	
 first	
 entry,	
 the	
 pfilename	
 is:	

	

proc/2011/11/08/f2/c2/p5/v2/PTF_201111083526_i_p_scie_t082746_u009907441_f02_p100037_c02.fits	

	

Check	
 the	
 website	
 for	
 more	
 informa:on	
 on	
 the	
 filename	
 conven:on.	

	

To	
 actually	
 retrieve	
 the	
 file,	
 you	
 first	
 take	
 the	
 string	

	

hPp://irsa.ipac.caltech.edu/ibe/data/pR/images/level1/	

	

And	
 append	
 to	
 it	
 the	
 full	
 filename	

	

proc/2011/11/08/f2/c2/p5/v2/PTF_201111083526_i_p_scie_t082746_u009907441_f02_p100037_c02.fits	

	

So	
 you	
 now	
 execute:	

humu%	
 wget	
 "hPp://irsa.ipac.caltech.edu/ibe/data/pR/images/level1/proc/2011/11/08/f2/c2/p5/v2/
PTF_201111083526_i_p_scie_t082746_u009907441_f02_p100037_c02.fits"	

-­‐-­‐2014-­‐05-­‐01	
 17:10:32-­‐-­‐	
 	
 hPp://irsa.ipac.caltech.edu/ibe/data/pR/images/level1/proc/2011/11/08/f2/c2/p5/
v2/PTF_201111083526_i_p_scie_t082746_u009907441_f02_p100037_c02.fits	

Resolving	
 irsa.ipac.caltech.edu...	
 134.4.54.110	

Connec:ng	
 to	
 irsa.ipac.caltech.edu|134.4.54.110|:80...	
 connected.	

HTTP	
 request	
 sent,	
 awai:ng	
 response...	
 200	
 OK	

Length:	
 33586560	
 (32M)	
 [applica:on/octet-­‐stream]	

Saving	
 to:	
 `PTF_201111083526_i_p_scie_t082746_u009907441_f02_p100037_c02.fits'	

	

100%[======================================>]	
 33,586,560	
 	
 40.8M/s	
 	
 	
 in	
 0.8s	
 	
 	
 	
 	

	

2014-­‐05-­‐01	
 17:10:34	
 (40.8	
 MB/s)	
 -­‐	

`PTF_201111083526_i_p_scie_t082746_u009907441_f02_p100037_c02.fits'	
 saved	
 [33586560/33586560]	

	

If	
 you’re	
 not	
 sure	
 you	
 have	

structured	
 your	
 URL	
 correctly,	

you	
 can	
 actually	
 “walk”	
 a	

virtual	
 directory	
 tree	
 to	
 see	

the	
 files	
 you	
 are	
 trying	
 to	
 get.	

Note	
 that	
 this	
 is	
 account-­‐
aware,	
 so	
 you	
 will	
 only	
 see	

the	
 files	
 actually	
 available	
 to	

you.	

And	
 there’s	
 the	
 image	
 we	
 just	

downloaded.	
 You	
 retrieve	
 the	

mask	
 and	
 catalog	
 files	
 exactly	

the	
 same	
 way,	
 only	
 you	

subs:tute	
 their	
 full	
 filenames	

for	
 the	
 image	
 we	
 just	
 used.	

More	
 Advanced	
 Retrieval	
 Op:ons:	
 Thumbnails	

Let’s	
 try	
 something	
 a	
 liPle	
 more	
 sophis:cated.	
 PTF	
 images	
 are	
 prePy	
 large,	
 and	
 oGen	

you	
 just	
 want	
 to	
 see	
 the	
 region	
 of	
 interest.	
 In	
 the	
 following	
 example,	
 we’ve:	

	

•  Requested	
 only	
 a	
 small	
 thumbnail	
 using	
 the	
 “?center=148.97,69.68&size=600arcsec”	
 op:on.	

•  Turned	
 off	
 the	
 thumbnail	
 default	
 file	
 compression	
 with	
 “&gzip=false”.	

•  Renamed	
 the	
 output	
 file	
 to	
 something	
 sensible.	

humu%	
 wget	
 "hPp://irsa.ipac.caltech.edu/ibe/data/pR/images/level1/proc/2011/11/08/f2/c2/p5/v2/
PTF_201111083526_i_p_scie_t082746_u009907441_f02_p100037_c02.fits?
center=148.97,69.68&size=600arcsec&gzip=false"	
 -­‐O	
 m82.fits	

-­‐-­‐2014-­‐05-­‐02	
 14:00:47-­‐-­‐	
 	
 hPp://irsa.ipac.caltech.edu/ibe/data/pR/images/level1/proc/2011/11/08/f2/c2/p5/
v2/PTF_201111083526_i_p_scie_t082746_u009907441_f02_p100037_c02.fits?
center=148.97,69.68&size=600arcsec&gzip=false	

Resolving	
 irsa.ipac.caltech.edu...	
 134.4.54.110	

Connec:ng	
 to	
 irsa.ipac.caltech.edu|134.4.54.110|:80...	
 connected.	

HTTP	
 request	
 sent,	
 awai:ng	
 response...	
 200	
 OK	

Length:	
 1442880	
 (1.4M)	
 [applica:on/fits]	

Saving	
 to:	
 `m82.fits'	

	

100%[======================================>]	
 1,442,880	
 	
 	
 -­‐-­‐.-­‐K/s	
 	
 	
 in	
 0.02s	
 	
 	
 	

	

2014-­‐05-­‐02	
 14:00:47	
 (61.3	
 MB/s)	
 -­‐	
 `m82.fits'	
 saved	
 [1442880/1442880]	

	

humu%	
 	

	

And	
 here’s	
 the	
 output	
 from	

the	
 thumbnail	
 request.	

Search	
 by	
 PTF	
 Field	
 ID	

Here	
 we	
 perform	
 a	
 search	
 by	
 PTF	
 FieldID	
 using	
 the	
 “where”	
 clause.	
 This	
 is	
 par:cularly	

useful	
 when	
 finding	
 data	
 from	
 the	
 PTF	
 first	
 data	
 release.	
 Because	
 this	
 release	
 is	
 limited	

to	
 a	
 subset	
 of	
 areas	
 around	
 the	
 sky,	
 finding	
 this	
 data	
 by	
 field	
 id	
 (which	
 we	
 supply	
 on	

the	
 data	
 release	
 web	
 pages)	
 will	
 ensure	
 that	
 you	
 get	
 all	
 the	
 data.	

humu%	
 wget	
 "hPp://irsa.ipac.caltech.edu/ibe/search/pR/images/level1?where=pRfield=4808"	
 -­‐O	
 out.txt	

-­‐-­‐2014-­‐05-­‐02	
 14:38:14-­‐-­‐	
 	
 hPp://irsa.ipac.caltech.edu/ibe/search/pR/images/level1?where=pRfield=4808	

Resolving	
 irsa.ipac.caltech.edu...	
 134.4.54.110	

Connec:ng	
 to	
 irsa.ipac.caltech.edu|134.4.54.110|:80...	
 connected.	

HTTP	
 request	
 sent,	
 awai:ng	
 response...	
 200	
 OK	

Length:	
 unspecified	
 [text/plain]	

Saving	
 to:	
 `out.txt'	

	

	
 	
 	
 	
 [
 <=>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
]	
 35,154	
 	
 	
 	
 	
 	
 -­‐-­‐.-­‐K/s	
 	
 	
 in	
 0.04s	
 	
 	
 	

	

2014-­‐05-­‐02	
 14:38:15	
 (954	
 KB/s)	
 -­‐	
 `out.txt'	
 saved	
 [35154]	

	

humu%	
 	

	

Here	
 we	
 see	
 that	
 the	
 IBE	
 search	
 (above)	
 has	
 returned	
 the	
 same	
 products	
 as	
 the	
 GUI	
 (below).	

And	
 that’s	
 it!	
 This	
 document	
 will	
 be	
 updated	
 with	
 more	
 examples	

as	
 they	
 arise.	
 Ques:ons	
 about	
 the	
 mechanics	
 of	
 the	
 archive	

should	
 be	
 directed	
 to	
 the	
 helpdesk	
 at	
 IRSA.	
 Ques:ons	
 about	
 PTF	

and	
 it’s	
 products	
 should	
 be	
 directed	
 to	
 the	
 PTF/iPTF	
 project.	

